

EPCOS Product Brief 2018

Energy Varistors

For the Protection of Power Distribution Systems

SIOV metal oxide varistors in the E series are designed to be used as active elements in gapless surge arresters for protection of medium and high voltage AC power utility distribution systems against overvoltages. Glass collar passivation makes this series suitable for a broad range of arrester designs such as porcelain housed arresters, or polymer housed arresters with a hollow insulator as well as for molded polymer arresters. The broad range of diameters supports the different class requirements according IEC and ANSI.

Construction

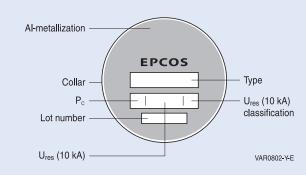
- Glass passivated collar
- Aluminum termination for pressure contact

Features

- Disk diameter of 32 to 99 mm
- Disk height up to 44 mm
- Stackable for higher voltage ratings
- Based on IEC 60099-4 and ANSI/IEEE C62.11
- Arrester blocks for distribution class
- Arrester blocks for station class

Energy Varistors: Distribution Class

Technical data



E 90	PC05 8NR602 2 15.7 450376	Elog		

Type Ordering code		E32NR302S B72232 E0302R074	E32NR502S B72232 E0502R074	E32NR602S B72232 E0602R074	E36NR302E B72236 E0302R074	E36NR502E B72236 E0502R074	E36NR602E B72236 E0602R074	Unit
Dimensions								
Diameter	Ø	32.0±1.0	32.0±1.0	32.0±1.0	36.6±1.0	36.6±1.0	36.6±1.0	mm
Height	h	17.7±0.6	29.6±0.6	39.5±0.6	18.5±0.6	30.8±0.6	37.0±0.6	mm
Arrester classification								
Suggested usage in gapless arrester constructions based on IEC 60099-4, Ed.	3	DM	DM	DM	DH	DH	DH	-
Nominal discharge current		5	5	5	10	10	10	kA
Characteristics								
Suggested rated voltage (max.)	Ur	3	5	6	3	5	6	kV
Continuous operating voltage (max.)	U_{c}	U _{res} /3.25	U _{res} /3.25	U _{res} /3.25	U _{res} /3.25	U _{res} /3.25	U _{res} /3.25	kV
Reference current	$I_{\rm ref}$	1	1	1	2	2	2	mA
Reference voltage (min.)	$\boldsymbol{U}_{\text{ref}}$	3	5	6	2.95	5	6	kV
Residual voltage at In	U _{res}	7.55 8.55	12.55 14.25	15.05 17.05	7.55 8.55	12.55 14.15	15.05 17.05	kV
Nominal discharge current (8/20 µs)	I _n	5	5	5	10	10	10	kA
High current impulse $(4/10 \ \mu s)^{1)}$		2 x 65	2 x 65	2 x 65	2 x 100	2 x 100	2 x 100	kA
Repetitive charge transfer rating (8/20 μs)	Q _{rs}	0.2	0.2	0.2	0.4	0.4	0.4	С
Max. resistive power dissipation at U_{c}	P_{c}	0.18	0.39	0.46	0.27	0.45	0.54	W
Approx. weight/pcs.		80	130	175	110	180	215	g
Packing unit		50	25	25	20	20	20	pcs.

¹⁾ Secondary insulation required for E32/E36 types.

Marking

Explanation example for type E36NR302E

P _c	Resistive power dissipation at maximum continuous operating voltage and 25 °C in 10^{-2} W e.g. P 09 = P _c = 9 \cdot 10 ⁻² W = 0.09 W
U_{res} (I _n)	Measured residual voltage at nominal discharge current $I_n = 10 \text{ kA}$ in kV e.g. 7.62 = 7.62 kV
U _{res} (I _n) classification	Residual voltage is classified in 100 V steps and identified by a letter e.g. A

Energy Varistors: Distribution Class

Technical data

Type Ordering code		E41NR302E B72241E0302R074	E41NR502E B72241E0502R074	E41NR602E B72241E0602R074	Unit
Dimensions					
Diameter	Ø	41.9±0.7	41.9±0.7	41.9±0.7	mm
Height	h	19.5±0.6	29.4±0.6	35.1±0.6	mm
Arrester classification					
Suggested usage in gapless arrester constructions based on IEC 60099-4, Ed. 3		DH	DH	DH	-
Nominal discharge current	Nominal discharge current		10	10	kA
Characteristics					
Suggested rated voltage (max.)	$U_{\rm r}$	3	5	6	kV
Continuous operating voltage (max.)	U_{c}	U _{res} /3.25	U _{res} /3.25	U _{res} /3.25	kV
Reference current	\mathbf{I}_{ref}	2	2	3	mA
Reference voltage (min.)	U_{ref}	3	5	6	kV
Residual voltage at In	U _{res}	7.35 8.25	12.25 13.75	14.65 16.65	kV
Nominal discharge current (8/20 µs)	I _n	10	10	10	kA
High current impulse $(4/10 \ \mu s)^{1)}$		2 x 100	2 x 100	2 x 100	kA
Repetitive charge transfer rating (8/20 μs)	Q _{rs}	0.5	0.5	0.5	С
Max. resistive power dissipation at U_{c}	P_{c}	0.27	0.45	0.60	W
Approx. weight/pcs.		150	220	265	g
Packing unit		20	20	20	pcs.

 $^{\mbox{\tiny 1)}}$ Secondary insulation required for E41 types.

Marking

		Explanation exa	mple for type E41NR302E
Bar code	 Inspection stamp, electrical testing 2 ms 	P _c	Resistive power dissipation at maximum continuous operating voltage and 25 °C in 10^{-2} W e.g. P $12 = P_c = 12 \cdot 10^{-2}$ W = 0.12 W
	— Type — U _{res} (10 kA) classification	U_{res} (I _n)	Measured residual voltage at nominal discharge current $I_n = 10$ kA in kV e.g. 7.85 = 7.85 kV
		U _{res} (I _n) classification	Residual voltage is classified in 100 V steps and identified by a letter e.g. A
U _{res} (10 kA)	VAR0803-Z-E	Bar code format	One dimensional bar code 128, acc. to ISO/ IEC 15417:2000. Content of information: U _{res} class

Energy Varistors: Station Class

					EPCO
Technical data					
		2 11.1911/1918 12.497/101 11.1747701			
Type Ordering code		E48NR113E B72248E0113S074	E48NR133E B72248E0133S074	E48NR153E B72248E0153S074	Unit
Dimensions		- -			
Diameter	Ø	48.0±1.0	48.0±1.0	48.0±1.0	mm
Height	h	30.5±0.6	35.4±0.6	40.4±0.6	mm
Arrester classification					
Suggested usage in gapless arrester constructions based on IEC 60099-4, Ed. 3	3	SL	SL	SL	-
Nominal discharge current		10	10	10	kA
Characteristics					
Suggested rated voltage (max.)	Ur	0.385 x U _{res}	0.385 x U _{res}	0.385 x U _{res}	kV
Continuous operating voltage (max.)	U_{c}	U _{res} /3.2	U _{res} /3.2	U _{res} /3.2	kV
Reference current	\mathbf{I}_{ref}	2	2	2	mA
Reference voltage (min.)	$\boldsymbol{U}_{\text{ref}}$	0.385 x U _{res}	0.385 x U _{res}	0.385 x U _{res}	kV
Residual voltage at In	$\boldsymbol{U}_{\text{res}}$	10.65 12.55	12.65 14.25	14.05 16.05	kV
Nominal discharge current (8/20 µs)	I _n	10	10	10	kA
High current impulse (4/10 µs)		2 x 100	2 x 100	2 x 100	kA
Repetitive charge transfer rating (2 ms)	Q _{rs}	1.2	1.2	1.2	С
Max. resistive power dissipation at U_{c}	P_{c}	0.26	0.30	0.34	w
Approx. weight/pcs.		305	350	400	g
Packing unit		12	12	12	pcs.

Marking

	Explanation example for type E48NR133E			
Al-metallization 2 Inspection stamp, electrical testing 2 ms	P _c	Resistive power dissipation at maximum continuous operating voltage and 25 °C in 10^{-2} W e.g. P $20 = P_c = 20 \cdot 10^{-2}$ W = 0.20 W		
Collar — Type Pc — Ures (10 kA)	U _{res} (I _n)	Measured residual voltage at nominal discharge current $I_n = 10$ kA in kV e.g. 13.45 = 13.45 kV		
Lot number	U _{res} (I _n) classification	Residual voltage is classified in 100 V steps and identified by a letter e.g. A		
U _{res} (10 kA) VAR0803-Z-E	Bar code format	One dimensional bar code 128, acc. to ISO/ IEC 15417:2000. Content of information: U _{res} class		

Energy Varistors: Station Class

				EPCOS
Technical data		Z Serverse Harrings		
Type Ordering code		E58NR133E B72258E0133S074	E58NR163E B72258E0163S074	Unit
Dimensions				
Diameter	Ø	59.7±1.0	59.7±1.0	mm
Height	h	35.4±0.6	44.0±0.6	mm
Arrester classification				
Suggested usage in gapless arrester constructions based on IEC 60099-4, Ed. 3	3	SM	SM	-
Nominal discharge current		10	10	kA
Characteristics				
Suggested rated voltage (max.)	Ur	0.4 x U _{res}	0.4 x U _{res}	kV
Continuous operating voltage (max.)	U_{c}	U _{res} /3.0	U _{res} /3.0	kV
Reference current	I _{ref}	3	3	mA
Reference voltage (min.)	U_{ref}	0.4 x U _{res}	0.4 x U _{res}	kV
Residual voltage at In	U _{res}	12.15 13.75	15.15 17.15	kV
Nominal discharge current (8/20 µs)	I _n	10	10	kA
High current impulse (4/10 µs)		2 x 100	2 x 100	kA
Repetitive charge transfer rating (2 ms)	Q _{rs}	2	2	С
Max. resistive power dissipation at $\rm U_{\rm c}$	P_{c}	0.4	0.5	w
Approx. weight/pcs.		545	675	g
Packing unit		8	8	pcs.

Marking

		Explanation exar	nple for type E58NR133E
Bar code EPCOS		P _c	Resistive power dissipation at maximum continuous operating voltage and 25 °C in 10^{-2} W e.g. P $32 = P_{\circ} = 32 \cdot 10^{-2}$ W = 0.32 W
Collar — Type	Гуре J _{res} (10 kA)	U _{res} (I _n)	Measured residual voltage at nominal discharge current $I_n = 10$ kA in kV e.g. 15.65 = 15.65 kV
P _c Ures (10) Lot number		U _{res} (I _n) classification	Residual voltage is classified in 100 V steps and identified by a letter e.g. A
U _{res} (10 kA)	VAR0804-A-E	Bar code format	Data Matrix 2D, acc. to ISO/ IEC 16022:2006. Content of information: Type, U _{res} , P _c , U _{res} class, lot number, running number (1 99999)

Energy Varistors: Station Class

Technical data

SPACE SP		2 PERCOR PERCOR PERCOR PERCOR PERCOR		2 EPENR ISSE FIGHT ISSE I 1977 IESSE		2 EPCOS P308/17/28 P308/17/29 117477063	
Туре		E64NR133E	E64NR163E	E70NR133E	E78NR123E	E99NR702E	
Ordering code		B72264 E0133S074	B72264 E0163S074	B72270 E0133S074	B72278 E0123S074	B72299 E0702S074	Unit
Dimensions							
Diameter	Ø	64.5±0.7	64.5±0.7	70.0±1.0	78.0±1.0	99.0±1.0	mm
Height	h	35.4±0.6	44.0±0.6	35.4±0.6	35.4±0.6	21.4±0.6	mm
Arrester classification							
Suggested usage in gapless arrester constructions based on IEC 60099-4, Ed. 3	3	SH	SH	SH	SH	SH	-
Nominal discharge current ¹⁾		20	20	20	20	20	kA
Characteristics							
Suggested rated voltage (max.)	$U_{\rm r}$	0.425 x U _{res}	0.425 x U _{res}	0.425 x U _{res}	0.431 x U _{res}	0.45 x U _{res}	kV
Continuous operating voltage (max.)	$U_{\rm c}$	U _{res} /3.0	U _{res} /3.0	U _{res} /2.9	U _{res} /2.9	U _{res} /2.9	kV
Reference current	$I_{\rm ref}$	5	5	5	5	5	mA
Reference voltage (min.)	U _{ref}	0.425 x U _{res}	0.425 x U _{res}	0.425 x U _{res}	0.431 x U _{res}	0.45 x U _{res}	kV
Residual voltage at 10 kA	$\boldsymbol{U}_{\text{res}}$	12.15 13.75	14.85 16.95	11.85 13.45	11.65 13.25	6.85 7.85	kV
Nominal discharge current (8/20 µs) ¹⁾	l _n	20	20	20	20	20	kA
High current impulse (4/10 μs) at 10 kA		2 x 100	2 x 100	2 x 100	2 x 100	2 x 100	kA
Repetitive charge transfer rating (2 ms)	Q _{rs}	2.4	2.4	2.8	3.6	6.0	С
Max. resistive power dissipation at $U_{\rm c}$	P_{c}	0.45	0.56	0.50	0.60	0.65	W
Approx. weight/pcs.		635	790	750	930	905	g
Packing unit		8	8	5	5	8	pcs.

EPCOS

¹⁾ U_{res} measured at 10 kA.

Marking

	Explanation exa	mple for type E99NR702E
Al-metallization 2 Inspection stamp, Bar code EPCOS	P _c	Resistive power dissipation at maximum continuous operating voltage and 25 °C in 10^{-2} W e.g. P 45 = P _c = 45 \cdot 10^{-2} W = 0.45 W
Collar — Type	U _{res} (I _n)	Measured residual voltage at nominal discharge current I = 10 kA in kV e.g. 15.65 = 15.65 kV
P _c Ures (10 KA) Lot number	U _{res} (I _n) classification	Residual voltage is classified in 100 V steps and identified by a letter e.g. A
U _{res} (10 kA) VAR0804-A-E	Bar code format	Data Matrix 2D, acc. to ISO/ IEC 16022:2006. Content of information: Type, U _{res} , P _c , U _{res} class, lot number, running number (1 99999)

Structure of ordering codes: The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of EPCOS, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under www.epcos.com/orderingcodes.

Important information: Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products. We expressly point out that these statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. It is incumbent on the customer to check and decide whether a product is suitable for use in a particular application. This publication is only a brief product survey which may be changed from time to time. Our products are described in detail in our data sheets. The Important notes (www.epcos.com/ImportantNotes) and the product-specific Cautions and warnings must be observed. All relevant information is available through our sales offices.