SIOV metal oxide varistors

Equation overview

Date:
January 2018
© EPCOS AG 2018. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

EPCOS AG is a TDK Group Company.

Equation overview

Equation no.		Page
1	$\mathrm{I}=\mathrm{KV}^{\alpha}$ $\alpha>1$ I Current through varistor V Voltage across varistor K Ceramic constant (depending on varistor type) α Nonlinearity exponent (measure of nonlinearity of curve) 	
2	$\mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}}=\frac{\mathrm{V}}{\mathrm{K} \mathrm{V}^{\alpha}}=\frac{1}{\mathrm{~K}} \mathrm{~V}^{1-\alpha}$	
3	$\log \mathrm{I}=\log \mathrm{K}+\alpha \log \mathrm{V}$	
4	$\log R=\log \left(\frac{1}{K}\right)+(1-\alpha) \log V$	
5	$\alpha=\frac{\log I_{2}-\log I_{1}}{\log V_{2}-\log V_{1}}$	
6	$W=\int_{t_{0}} \int_{t_{1}} \mathrm{~V}(\mathrm{t}) \mathrm{i}(\mathrm{t}) \mathrm{dt}$	
7	$\|\mathrm{TC}\|<0.5 \cdot 10^{-3} / \mathrm{K}=0.05 \% / \mathrm{K}=1 \% / \Delta 20 \mathrm{~K}$	
8	$v_{\text {SIOV }}=\left(\frac{Z_{\text {SIOV }}}{Z_{\text {source }}+Z_{\text {SIOV }}}\right) v$	
9	$\mathrm{i}^{*} \leq \mathrm{i}_{\text {max }}$	
10	$\mathrm{W}^{*} \leq \mathrm{W}_{\text {max }}$	
11	$\mathrm{P}^{*} \leq \mathrm{P}_{\text {max }}$	
12	$\mathrm{i}^{*}=\frac{\mathrm{V}_{\mathrm{s}}-\mathrm{V}_{\text {SIOV }}}{\mathrm{Z}_{\text {source }}}$	
13	$\tau \approx \frac{\mathrm{L}}{\mathrm{R}_{\mathrm{Cu}}+\mathrm{R}_{\mathrm{SIOV}}}[\mathrm{s}]$ R_{Cu} $[\mathrm{H}]$ Inductance $\mathrm{R}_{\mathrm{SIOV}}$ $[\Omega]$ Coil resistance SIOSistance at operating current	
14	$\mathrm{t}_{\mathrm{r}}=\frac{\int \mathrm{i}^{*} \mathrm{dt}}{\hat{\mathrm{i}^{*}}}$	
15	$\frac{t_{37 \%}}{t_{50 \%}}=\frac{I_{n} 0.37}{I_{n} 0.50}=\frac{-0.994}{-0.693}=1.43=\frac{\tau}{T_{r}}$	
16	$W^{*}=\hat{v^{*}} \hat{\mathbf{i}}^{*} t^{*}$ $\hat{\mathrm{v}}^{*}$ $[\mathrm{~V}]$ $[\mathrm{J}]$ $\hat{\mathrm{i}}^{*}$ $[\mathrm{~A}]$ $\mathrm{t}_{\mathrm{t}}^{*}$ $[\mathrm{~s}]$	
17	$\mathrm{W}^{*}=1 / 2 \mathrm{Li}^{\star 2} \quad\left[\mathrm{JJ} \begin{array}{lll}\mathrm{L} \\ \mathrm{i}^{\star} & {[\mathrm{H}]} \\ {[\mathrm{A}]}\end{array}\right.$	
18	$\mathrm{W}_{\text {max }}=\mathrm{v}_{\text {max }} \mathrm{i}_{\text {max }} \mathrm{t}_{\mathrm{r} \text { max }}$	

Equation overview

Equation no.						Page
19	$\mathrm{P}^{*}=\frac{\mathrm{W}^{*}}{\mathrm{~T}^{*}}=\frac{\mathrm{v}^{*} \mathrm{i}^{*} \mathrm{t}^{*}}{\mathrm{~T}^{*}}[\mathrm{~W}]$		$\begin{aligned} & {[\mathrm{J}]} \\ & {[\mathrm{s}]} \\ & {[\mathrm{V}]} \end{aligned}$		[A] [s] [W]	
20	$T_{\min }=\frac{W^{*}}{P_{\max }}[s]$		[J] [W]			
21	$\log \mathrm{V}=\mathrm{b} 1+\mathrm{b} 2 \cdot \log (\mathrm{I})+\mathrm{b} 3 \cdot \mathrm{e}^{-\log (1)}+\mathrm{b} 4 \cdot \mathrm{e}^{\log (1)}$			$1>0$		
22	$\mathrm{AVR}=\frac{\mathrm{V}^{*}}{\mathrm{~V}_{\max }}$					
23	$\mathrm{i}_{\mathrm{L}}=\mathrm{A}+\mathrm{k} \sqrt{\mathrm{t}}$					
24	$\lambda[\mathrm{fit}]=\frac{10^{9}}{\mathrm{ML}[\mathrm{~h}]}$					

